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ABSTRACT: Nanoscale expression of distinct particles has led to revolutionary advancements in all key
areas such as health, drugs, and agriculture, as compared to their bulk equivalents. Nanotechnology is the
science of studying nanoscale particles and their behaviour. Climate change, urbanisation, sustainable
resource use, and environmental challenges are all factors that lead to the usage of nanotechnology in
agriculture. Nanopesticides, nanofertilizers, nanoherbicides, controlled delivery devices etc are the
nanotechnological applications in agriculture. Nanotechnological techniques, like any other technology,
offer benefits and drawbacks. Some of the negative aspects of nanotechnology include: entry of
nanoparticiles into environment, humans and plants to toxic levels; generation of large amounts of
hazardous waste creating environmental threat. Adoption of greener methods for synthesis, as well as the
use of green nanomaterials, is a current research trend, and before new nanotechnology advances are
implemented, they must be thoroughly investigated.
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INTRODUCTION

Global food production and distribution have been
severely strained by booming population, climate
variability, industrial emissions, and growing fuel and
power demands. According to the Food and Agriculture
Organization (FAO, 2017), around 2050, the population
of the planet would have surpassed 10 billion, resulting
in a 50 percent increase in food requirement,
predominantly in developing countries. Furthermore,
approximately 815 million people are estimated
malnourished, with just further 2 billion people around
the world anticipated to be malnourished around 2050.
(FAO, 2017). In addition, by 2050, energy and food
requirements will have surged over 70% from present
rate in a sustainable way (Chen and Yada, 2011).
Sustainable agriculture offers a feasible solution to the
aforementioned issues, yet in India, sustainable
agriculture faces serious challenges such as extracting
more water from resources than is replenished in
traditional irrigation, resulting in water scarcity,
subsidisation of urea as the primary nitrogen fertiliser,
resulting in nitrate toxicity in water reservoirs, and
accumulation of pesticides and insecticides at toxic
levels in both crops and the environment. This situation
needs major scientific and technological advancements.

Nanotechnology, according to recent studies, has the
capacity to improve way of farming by improving farm
inputs effectiveness and giving solutions to agricultural
and challenges posed by nature. Nanotechnology will
raise crop productivity based on current ecological
parameters, crop disease detection and management,
and enhancing crops’ mineral uptake capacity from the
soil (Alfadul et al., 2017). With reports from Nano-
forum (2006); USDA (2002); Roco (1999),
nanotechnology has gained traction in agriculture. All
fields of agricultural activity will be overtaken by nano-
technology (Mukhopadhyay, 2014). As a result,
research into nanotechnology's agricultural potential
has garnered a lot of coverage in past few years (Kah et
al., 2019). The goal of this research is to give another
resource for academics working in a variety of nano-
enabled agriculture sectors, highlighting potential and
future work paths for nanotechnology in global food
security.
Nanotechnology and nanoparticles
"Nanotechnology is the exploration and management of
matter at the nanoscale, where distinct phenomenon
permit revolutionary applications," according to the US
National Nanotechnology Initiative (NNI) 2004 and
entails all of the procedures outlined in Table 1.
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Table 1: Primary procedures in nanotech process.

I
Atomic, molecular, and macromolecular research and development with lengths ranging from 1 to 100

nanometers.

II
Because of their tiny and/or intermediate size, systems and equipments with unique features and

functions to be build and used.
III On an atomic scale, the ability to govern or manipulate.

Nanomaterials are defined by the International
Organization for Standardization as "substances with
just about any outer dimensions in the nanometer range
or possessing inner structure or surface morphology in
the nano level," while the European Commission's
Scientific Committee on Emerging and Newly
Identified Health Risks defines them as "components
including outer structure, or even an inner structure
having novel properties in comparison to the same
material without nanostructured features."

Why nanoparticles?
Nanoparticles contain characteristics such as small size
(1-100 nm), high activity, and chemical and optical

properties particular to this size range (Khan & Rizvi,
2014). The properties of nanoparticles include
hydrophilic nature, miscibility, unevenness,
morphology, adsorption during synthesis, capacity to
yield superoxide radicals, stoichiometry,
competiting binding ability with receptor, dispersion,
and agglomeration (Somasundaran et al., 2010). The
significant fraction of atoms on the surface of these
particles suggests that they could be used to build
agricultural nanosystems (Maurice and Hochella, 2008)
(Table 2). Table 3 lists nanomaterials with possible
applications in plant metabolism.

Table 2: Nanoparticles and its application in Agriculture.

Sr. No. Type of Nanoparticle Applications References

1. Nanopesticides Crop protection
Krishnaraj et al. (2012);  Jayaseelan et al.

2012
2. Nanoformulations Delivery systems Guan et al. (2010)

3. Nanosensors Diagnosis of Plant disease
Kang et al. (2010); Chartuprayoon et al.

(2010)

4. Nanobiosensors
Checking of quality of
agricultural products

Van Dyk and Pletschke (2011)

5. Nanofilters /Nanoabsorbents Management of water Hajeh et al. (2013)
6. Nanoremediation Management of soil Mohamed and Hairou (2011)

Table 3: Nanomaterials involved in plant metabolism.

Sr. No. Type of Nanomaterial Involvement in plants References

1. Zinc oxide
In germination, growth of roots, dry weight of shoots,

biomass, yield.
Zhao et al. (2014)

2. Graphene oxide In germination Anjum et al. (2014)

3. Titanium dioxide

Regulation of photosystem II, Growth of plants, Length of
roots, Chlorophyll content, germination, Hill reaction, rate
of transpiration, non-cyclic photophosphorylation, protect

chloroplasts from aging, net rate of photosynthesis.

Qi et al. (2013)

4. Silver nanoparticles
Antagonize inhibition by 2,4-dichlorophenoxyacetic acid

(2,4-D) on plant growth.Germination and growth of
seedlings, length of roots, dry weight of root and shoot,

Savithramma et al.
(2012)

5. Aluminium oxide Length of roots Lee et al. (2010)

6. Silicon dioxide Growth parameters
Yuvakkumar et al.

(2011)
7. Sulphur Dry weight Patra et al. (2013)
8. Carbon nanotubes Root elongation, germination and growth of seedlings. Miralles et al. (2012)

APPLICATIONS OF NANOTECHNOLOGY IN
AGRICULTURE

Nanofertilizers. Chemical fertilisers are limited in their
application because of fertiliser loss which leads to
environmental pollution and increases the cost of
manufacturing (FAO, 2017). Around 40-70 percent N
(De Rosa, 2010), 50-90 percent K and 80-90 percent P
are dispersed in the ecosystem thus unavailable to the
crop (Ombodi and Saigusa, 2000), and chemical
interaction in soil causes 8–90 percent of standard
phosphatic fertilisers to be lost and inaccessible to
plants, resulting in long-term and economic losses
(Giroto et al., 2017). In this regard, nanotechnology has

been used to lessen loss of nutrients, generate gradual
fertiliser release, and increase nutrient distribution that
aren't readily available (Kah et al., 2018).
Nanotechnology has enabled researchers to examine
nano range substances as fertiliser transporters or
managed vectors for the development of smart
fertilisers as emergent means to increase nutrient usage
productivity and lowering pollution costs
(Chinnamuthu and Boopathi, 2009). Nano-fertilizers
can release nutrients, particularly NO3-N, for up to 50
days, whereas urea-based fertilisers only release
nutrients for 10-12 days. The nanofertilizer had 82
percent N-use efficiency whereas the conventional
fertiliser (urea) had a 42 percent N-use efficiency,
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resulting in increase in nitrogen-usage of 40 percent,
which is impossible to obtain in the traditional system
(Subramanium et al., 2009).
Nanotechnological applications to enhance NUE
(A) Nanobiosensors
A biosensor is a tool that includes a biological
recognition element with a physical or chemical
detector to detect something. Wheat roots and
rhizosphere microbes have been found to communicate
with each other as a key component of chemical
signalling networks (Monreal et al., 2015) via
nonobiosensors (Fig. 1).

Fig. 1. (yellow): Specific root chemical signals that are
bound to  (red): a nanobiosensor placed in  (blue): a

polymer film coating (dark grey): ZnO-fertilizer
nanoparticles (white spheres): the consequences of

biosensor and signal binding process (Monreal et al.,
2015).

(B) Encapsulation
Encapsulation reduces the solubility of active
ingredients, runoff rates, and interactions with

agricultural workers. Due to higher friction on the
surface, nanomaterial’s coatings on fertiliser granules
keeps the material in place with higher effectiveness
than standard surfaces, allowing for more controlled
release. De Rosa. (2010) suggested that nutrients may
be encapsulated inside nanomaterials to create
nanofertilizers (Fig. 2). One of these novel facilities is
the encapsulation of fertilisers in nanoparticles, which
can be accomplished in three ways:
1. Nutrients can be encased within nanosized
substances.
2. Placed in polymer coatings.
3. Nanoparticles or emulsions are used to deliver the
product. (Rai et al., 2012).

Fig. 2. Encapsulation of fertilizer in nano-particulate
polymeric shell.

Encapsulation allows targeted release of fertilizer (Fig.
3). Fertilisers incorporated inside nanoparticles will
boost nutrient uptake (Chinnamuthu and Boopathi,
2009). By placing and cementing fertiliser capsules,
nano or sub nanocomposites could enable the gradual
release of nutrients (Lui et al., 2006) (Fig. 4). It is
claimed that a patented nanoparticle of N, P, K,
micronutrients, and amino acids improves grain
and crop nutrient uptake (Jinghua, 2004).

Fig. 3. Targeted delivery of nano-fertilizer.

Fig. 4. Fertilizer coated with nanoparticles for slow delivery of nutrient.
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1. Nanoherbicides
Herbicides enclosed in polymeric core shell
nanoparticles are nanoherbicides, which are alternate
types of herbicides developed in conjunction with
nanomaterials (Kumar et al. 2015). Encapsulated target
specific herbicides in nanoparticles are employed to
eliminate specific weeds by acting on specific root
receptors (Jamplek and Kralova, 2015). The invention
of a nanoparticle-encapsulated target-specific herbicide
chemical is focused at a particular binder of target weed
roots, that penetrates the root system and is translocated
to the portions that hinder glycolysis of the roots. As a
result, the weed plant will get hungry and die
(Chinnamuthu and Kokiladevi, 2007). Also by creating
tubes that generate breaches in the seed coat, enabling
water and chemicals to enter, carbon nanotubules break
the dormancy of weed seeds, speeds up germination,
and cuts germination time in half (Mariya et al., 2009).
Detoxification of herbicide residues: Atrazine accepted
worldwide for the control of weeds characterized as pre
and post-emergence broad leaved and grassy in nature,
having long half-life (125 days) and higher mobility in
some soils. Under regulated conditions, the use of silver
modified with magnetite nanoparticles stabilised with

Carboxy Methyl Cellulose (CMC) nanomaterial
resulted in an 88 percent breakdown in residues of
atrazine (Susha et al., 2009).
Atrazine + Fe based nanocomposites
Hydrolyzed Atrazine + CO2 + NH3

2. Nanotechnology and Abiotic Stresses
Various nanoparticles used, have been proven
beneficial on the growth and yield of crop by altering
the physiological systems during drought of the crop. It
has been found, for example, that foliar sprays of NPs
of iron and oil per centage of safflower species can
mitigate, negative effects in drought stress on
parameters of yield thus yield can be enhanced (Davar
et al., 2014). During drought conditions, the addition of
NPs of titanium dioxide at the rate of 0.02 percent
increased the plant height, ear number, biomass, ear
weight, seed number, 1000-seed weight, harvest index
and ultimate yield (starch and gluten content)
(Jaberzadeh et al., 2013). Therefore these investigations
revealed that the formulations enabling selected
nanoparticles can favourably interact with probiotics of
the plants that promotes drought tolerance and robust
plant tissues (Jacobson et al., 2018) (Table 4).

Table 4: Beneficial impacts in abiotic stresses by nanopaticles.

Sr. No. Type of the stress Crop Type of the Nanoparticle References
1. Waterlogging (Glycine max L.) Ag Nanoparticles Mustafa et al. (2015)
2. High Temperature Sorghum bicolor (L.) Moench NPs of selenium Djanaguiraman et al. (2018)

3. Drought Carthamus tinctorious L. Iron nanoparticle
Davar et al. (2014)

4. High Temperature Moringa oleifera NPs of siliver Iqbal et al. (2017)

5.
Drought

Sesasum indicum L. Oxide of iron Mostafa et al. (2016)

6. Chilling Triticum aestivum L
Nanoparticles of Biogenic

silver
Bhati-Kushwaha et al. (2013)

7. Waterlogging (Glycine max L.) Al2O3 NP Mustafa et al. (2015)

8. Drought
Zea mays L. and Triticum aestivum

L.
Analcite Nanoparticles Nataliya et al. (2014)

9. Salinity
Trigonella

foenum-graecum
Nano particles of silver Hojjat and Kamyab (2017)

10. High CO2 Oryza sativa L. nTiO2 Du et al. (2017)
11. Heavy metals Triticum aestivum L. Oxide of zinc Hussain et al. (2018)

12. UV-B Triticum aestivum L Nano Ag
Kumar and Swati

(2016)

13.
Salinity

Vicia faba L. nTiO2 Mojtaba and Lam-Son (2018)

3. Nanotechnology in Diagnosis and Management of
Plant Diseases
The most challenging aspects of plant disease
management is detecting the disease at the proper stage.
Because a huge percentage of plant illnesses are only
discovered at later stages, controlling them becomes a
difficult effort. Recent research has found that
nanoparticles can have antibacterial characteristics,
which can be generated by either oxidative stress or
bacterial cell wall physical breakdown caused by
reactive oxygen species (ROS) generation (Gurunathan
et al., 2012). There are numerous instances in the
literature that support the findings, such as zinc
nanoparticles showing the highest inhibitory value
against P. aeruginosa (Jayaseelan et al., 2012).

Higher anti-microbial activity was found against S.
aureus, E. coli, P. aureginosa with the aid of
nanoparticles (Guzman et al., 2009).

Another nanomaterial, nanoparticles of copper oxide
(CuO NPs), has been found to have antibacterial action
against Pseudomonas aeruginosa, S. aureus, E. coli,
and Bacillus subtilis (Azam et al., 2012). Disease of
Helianthus annuus like charcoal rot or damping off
were suppressed by micronutrients like Zn (zinc) or Mn
(manganese) particles (Abd El-Hai et al., 2010).
Against microorganisms, a mixture of PVP and Ag
nanoparticles had effective antifungal properties
(Bryaskova et al., 2011). Plant patho-fungi Rhizoctonia
solani, B. cinerea, Macrophomina phaseolina,
Curvularia lunata, Sclerotinia sclerotiorum, Alternaria
alternate were also studied with silver nanoparticles.
All pathogens studied had stronger inhibitory action
when NPs were present in lower concentrations
(Krishnaraj et al., 2012). A. flavus growth can be
stopped by the Zn NPs (25 mg mL-1) (Jayaseelan et al.,
2012). Various scientists have also used nanoparticle
mRNA for disease control (Table 5).
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Table 5: Nanoparticles for plant disease control.

Sr. No. Nano-particle type mRNA Plant disease managed References

1.
Oryza sativa

Osa-pre-miR528
Rice black streaked swarf virus and

Rice stripe virus.

Sun et al.
(2016)

2.
Artificial miRNA in transgenic

Arabidopsis
amiR-Hc-Pro159 and

amiR-P69159

(1) Turnip mosaic Virus
(2) Turnip yellow

mosaic virus

Niu et al.
(2006)

3 Nicotiana tabacum amiR-159a Cassava brown streak virus
Wagaba

et al. (2016)

4. Arabidopsis thaliana Pre-miR-159a Water melon silver mottle virus
Kung et al.

(2012)

5.
AmiRNA against

Hc-Pro
Arabidopsis thaliana

miRNA171a miRNA167b
and miRNA159a,

(1) TGBp1/p25 of
Potato virus X (PVX)

(2) Potato virus Y
(PVY)

Duan et al. (2008)

6. Arabidopsis thaliana amiR159-P69 Turnip mosaic virus Lin et al. (2009)
7.

Triticum aestivum Pre-miR395 Wheat streak mosaic virus
Fahim et al.

(2012)
8.

Nicotiana tabacum Pre-miR-159a Tomato spotted wilt virus
Mitter et al.

(2016)
9. Solanum

lycopersicum
amiR-2a/b Viral infection

Zhang et al.
(2011)

10. Hordeum vulgare huv-pre-miR171 Wheat dwarf virus
Kis et al.
(2016)

11. .Arabidopsis thaliana amiR-159a Cucumber mosaic virus
Duan et al.

(2008)

12.
Nicotiana tabacum

amiR-Hc-
Pro167b,
amiR-Hc-
Pro159a,
amiR-Hc-
Pro171a

Potato virus X and potato virus Y
Ai et al.
(2011)

13. Vitis vinifera amiRCP-2 Grapevine fan leaf virus
Jelly et al.

(2012)
14. Solanum

lycopersicum
amiR-AV1-3 Tomato leaf curl virus

Van et al.
(2013)

15. AmiRNA based on Arabidopsis pre miRNA159a
Cucumber mosaic

Virus
Ai et al.
(2011)

4. Nanopesticides
Nanoparticles can be effectively used in insect pest
control and prevention of host infections (Khota et al.,
2012). A new nano-encapsulated pesticide formulation
with better permeability solubility, stability and
specificity is developed (Bhattacharyya et al., 2010).
Organic polymers mineral nanoparticles or surfactants
of nanometer size are employed in the nano-pesticidal
development (Alfadul et al., 2017). Insect-specific
nanopesticides are going to be included in the new
generation of pesticides while causing no harm to other
critical soil insects (Kah et al., 2013). Non-toxic and
promising pesticide delivery technologies are being
developed in order to increase crop output per unit of
time while limiting negative consequences on
ecosystem (Grillo et al., 2016). Rao and Paria. (2013)
found phytopathogens of Venturia inaequalis,
Fusarium solani were controlled by Sulfur
nanoparticles (SNPs) that were regarded as green
nanopesticide. Rouhani et al. (2012) found A. nerii. was
controlled by Ag nanoparticles' as these particles were
found to have insecticidal properties. Using a solvo
thermal technique, nanoparticles of Ag-Zn or Ag were
developed and several doses of insecticidal solutions
were tested on A. nerii.
5. Nanomaterials and Genetic Transformation
NPs-mediated transmittance has become extremely
important in plant nanobiotechnology. Nanoparticles
can be used to facilitate genetic change in tissue

cultures of plants. Nanoparticles are utilised in the
isolation of protoplasm, for example, in reducing the
impact of enzymes of the cell. Endocytosis is employed
for the DNA delivery into the tobacco protoplast using
mesoporous silica nanoparticles. Biolistic cannon is
also employed to deliver drugs, nanoparticles that are
gold-coated and DNA to leaves and calluses (Torney et
al., 2007). In contrast to typical gold particles used with
a gene gun, nanoparticles with gold coatings,
transported DNA into Nicotiana tabacum, Oryza sativa
and Leucaena leucocephal (Kumar et al., 2010).
Plasmid DNA that was Green-fluorescent protein
(GFP)-encoded was efficiently transported into cells of
turf-grass using poly (amidoamine) dendrimer
nanoparticles (Pasupathy et al., 2008). The DNA
transfection effectiveness was improved by adjusting
the medium pH and dendrimer molar concentration.
Nanoparticles of calcium phosphate were used to
transmit the 1301 vector of pcambia into Brassica
juncea in order to maintain the GUS quality (Naqvi et
al., 2012). Silver nanoparticles that were expanded on
culture media were successful in activating callus
morphology and anatomy by altering the protein
composition and DNA sequence in Solanum nigrum.
However, in order to improve somaclonal variants, it is
necessary to examine the vast range of nanoparticle
uses.
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6. Iron Nanoparticles for soil cleaning
Several ways of using nanotechnology, particularly
nanoparticles, used for cleaning the soil that are
contaminated with heavy metals are being developed.
Nanoclean-up procedure that involves introduction of
iron nanoparticle within a contaminated area is
developed. Nanoparticles flow along ground water and
disinfect along the way, saving money over digging up
the soil to decontaminate it. Activity of this nanoscale
iron inside the soil is for 6-8 weeks, before dissolving
in ground water or blending in with naturally occurring
iron.
7. Wastewater treatment methods with nano-based
materials

Nanomaterials have the capacity to improve the
effictiveness in wastewater treatment (Khan et al.,
2021) (Table 6). Nanomaterials, such as nanoparticles,
nanomembranes and nanotubes are recognized and
eliminated in variety of biological and chemical
substances, including organic materials, bacteria,
viruses, algae, antibiotics and micronutrients (Khan et
al., 2018). These materials offer exceptional properties
that can be utilised to make photocatalytic reactive
materials, change membranes, and make perfect
adsorbents (Castaneda and Lau, 2017). Silver oxides,
titanium dioxides, aluminium oxide, and zinc oxides are
nanoparticle catalysts for removing microbiological and
hazardous materials pollutants from water with great
efficiency and are reusable (Chang et al., 2017).

Table 6: Nanomaterials for waste water treatment (Mansoori et al., 2008).

Sr. No. Nanoparticle type Target to be removed Mechanism of Treatment
1. Nanoparticle based TiO2 Organic pollutants Photocatalysis
2. Nanoparticle based Fe Heavy metals, anions, organic pollutants Reduction, absorption.
3. Nanoparticle based bimetallic Dicholrination Reduction, absorption.
4. Nanofiltration and nanomembranes Organic and inorganic substances Nanofiltration
5. Magnetite nanoparticles organic compounds, Heavy metals, Adsorption
6. Metal-sorbing vesicles Heavy metals Adsorption
7. Nanoclay Heavy metals, organic pollutants, anions Adsorption
8. Micelles Organic pollutants Adsorption
9. Nanotube Anions, heavy metals, organic pollutants Adsorption

10. Dendrimers Pollutants, Heavy metals Encapsulation

CONSTRAINTS

Nanotechnology is a fast expanding subject of science
that has applications in practically every field. Despite
its potential, it has had unforeseen negative
consequences on humans and the environment during
the manufacturing and processing of nanoparticles
(Bouwmeester et al., 2009).
• Bandyopadhyay et al. (2013) found that nanoparticles
when invaded within the food web and water sources,
have an influence on humans. According to many
reports, nanotechnology can aid in the alleviation of
poverty and other challenges (Mukhopadhyay, 2014).
• The particles' size poses a difficulty when breathed
because they penetrate the lungs (Jinquan et al., 2004).
Buzea et al. (2007) demonstrated that asbestos
nanoparticles and carbon nanotubes have a considerable
impact on lung diseases.
• Bonne et al. (2000) found that because of
environmental and residual concerns, the durability and

disintegration of nanoparticles that are inorganic is a
point of discussion. Nanoparticles interact with non-
target areas, causing health and environmental
problems (Claudia et al., 2012).
• Various commissions and unions have been founded
in various countries to assess the risks of
nanotechnological breakthroughs, such as the European
Union and the Royal Commission on Environmental
Pollution (COT, 2005).
• Nanoparticle-related dangers are difficult to spot
(Dhawan et al., 2009).
• It's difficult to quantify nanotechnological danger and
its impact on the environment and people (Nel et al.,
2006).
• To apply nanoparticles in a certain way and at a
specific concentration, a thorough understanding in the
mechanisms of phytotoxicity of nanopaticles is
essential. Table 7 lists some of the phytotoxic
consequences of nanoparticles.

Table 7: Phytotoxicity symptoms of nanoparticles.

Sr. No.
Type of

Nanoparticle
Plant Size (nm)  of the

particle Phytotoxicity symptoms References

1. Ferric oxide Oryza sativa 7–13
Root phytohormone

Inhibition
Gui et al. (2015)

2.

Zinc oxide Brassica pekinensis
Glycine max, Oryza

sativa, Zea mays,
,Pisum sativum

<50

loss of root
cell viability, decrease in root

growth
Hossain et al.

(2016)

3.
Silver Oryza sativa 50 Breakage in vacuole and cell wall Mazumdar and

Khairou (2011)

4.
Copper oxide Oryza sativa,  Zea

mays
40–80

Inhibited shoot length,  reduced
root elongation

Yang et al. (2015)
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FUTURE SCOPE

Nanotechnology has the power to reshape agricultural
output by enabling for further scientific crop
development, planning and conservation measures. By
using nanotechnology to agriculture and food
production systems, nanotechnology experts can assist
society's development in a multitude of ways.
Bioremediation, environmental surveillance etc can all
be greatly simplified owing to nanotechnology. In
future, we can increase agricultural output by
implementing the following strategies:
• Herbicide delivery, pest vectoring and management
by nanocapsules.
• Detection of aquatic toxins using nanosensors.
• Biopolymers that are within nano-range with low
environmental and economic impact, could also be used
in heavy metal detoxification and reprocessing.
• Smart particles could be useful for monitoring and
purifying the environment.
• At normal temperature, nanostructured metals can be
used to degrade hazardous organic wastes.
Farming practices, particularly pest management, could
change the dynamics of nanotechnology in the future.
Over the next 20 years, nanosciences will accelerate the
sustainable agriculture. Nanostructures could be
valuable in the development of next-generation
herbicides, pesticides, and insect repellents. As a result,
nanotechnology is thought to be one of the most
promising solutions to issues in the agricultural and
food industries.

CONCLUSION

There are a variety of user-friendly nanotechnology
applications in the agricultural environment ranging
from nanoherbicides, nanofertilizers, manufacturing of
biosensors, plant disease diagnosis and its management
etc. Regardless of these potential uses, new applications
must be properly examined and regulated before being
introduced into various businesses. A lot of challenges
relating to human safety, the environment, and the
ecosystem have yet to be resolved. Human exposure to
nanomaterials, as well as the agri-food chain, may have
detrimental repercussions for human health and the
environment since nanoparticles attack non-target areas.
As a result, effective and realistic risk management
methods should be utilised during technology
advancements. However, owing to certain negative
responses from the scientific community to its
application in the food and agriculture industries, the
future of nanotechnology remains questionable.
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